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APPROXIMATION OF ALMOST EULER–LAGRANGE

QUADRATIC MAPPINGS BY QUADRATIC MAPPINGS

John Michael Rassias, Hark-Mahn Kim† and Eunyoung Son

Abstract. For any fixed integers k, l with kl(l − 1) ̸= 0, we es-
tablish the generalized Hyers–Ulam stability of an Euler–Lagrange
quadratic functional equation

f(kx+ ly) + f(kx− ly) + 2(l − 1)[k2f(x)− lf(y)]

= l[f(kx+ y) + f(kx− y)]

in normed spaces and in non-Archimedean spaces, respectively.

1. Introduction

In 1940, S.M. Ulam [22] at the Mathematics Club of the University of
Wisconsin has presented the question concerning the stability of group
homomorphisms: when a solution of an equation of group homomor-
phism, differing slightly from a given one, must be near to the exact
solution of the given equation. In 1941, Hyers [9] gave an affirmative
answer to Ulam’s problem for the case of approximate additive mappings
on Banach spaces. In 1950, Aoki [1] has extended the Hyers–Ulam sta-
bility theorem for unbounded controlled functions. This stability result
for approximate additive mappings has been further generalized and re-
discovered by Rassias [19] in 1978 and by P. Gǎvruta [7] in 1994.

The quadratic function f(x) = cx2 satisfies the functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y)(1.1)

and therefore the equation (1.1) is called the quadratic functional equa-
tion. Every solution of equation (1.1) is said to be a quadratic mapping.
The Hyers–Ulam stability theorem for the quadratic functional equation
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(1.1) has been established by Skof [21] for mappings f : E1 → E2 where
E1 is a normed space and E2 is a Banach space. The result of Skof has
been further generalized by Czerwik [4], Rassias [20], Borelli and Forti
[2]. During the last three decades, a number of papers and research
monographs have been published on various generalizations and appli-
cations of the Hyers–Ulam stability of several functional equations, and
there are many interesting results concerning these stability theorems of
several functional equations [5, 8, 10, 12, 13].

In particular, Rassias investigated the Hyers–Ulam stability for the
relative Euler–Lagrange functional equation

f(ax+ by) + f(bx− ay) = (a2 + b2)[f(x) + f(y)](1.2)

in the references [16, 17, 18].

For any fixed integers k with k ̸= 0, 1, Kim et al. [14] investigated
the generalized Hyers–Ulam stability of the Euler–Lagrange quadratic
functional equation

f(kx+ y) + f(kx− y)(1.3)

= k[f(x+ y) + f(x− y)] + 2(k − 1)[kf(x)− f(y)]

in normed spaces and in non-Archimedean normed spaces. In addition,
the authors [15] have established the generalized Hyers–Ulam stability
of the Euler–Lagrange quadratic functional equation

f(kx+ ly) + f(kx− ly)(1.4)

= kl[f(x+ y) + f(x− y)] + 2(k − l)[kf(x)− lf(y)]

in fuzzy Banach spaces, where k, l are nonzero rational numbers with
k ̸= l. Combining the equation (1.3) with (1.4), we arrive at the following
functional equation

f(kx+ ly) + f(kx− ly) + 2(l − 1)[k2f(x)− lf(y)](1.5)

= l[f(kx+ y) + f(kx− y)],

and the authors [3] recently have established the generalized Hyers–Ulam
stability of the equation in fuzzy Banach spaces. In this paper, we are
going to investigate the generalized Hyers–Ulam stability of the equation
(1.5) in normed spaces and in non-Archimedean normed spaces for any
fixed nonzero integers k, l with l ̸= 1.
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2. Stability of (1.5) in Banach spaces

In this section, let X be a normed space and Y a Banach space. For
notational convenience, we would like to define an operator Dk,lf(x, y)
as

Dk,lf(x, y) := f(kx+ ly) + f(kx− ly) + 2(l − 1)[k2f(x)− lf(y)]

−l[f(kx+ y) + f(kx− y)]

for all x, y ∈ X, where k, l are fixed nonzero integer numbers with kl(l−
1) ̸= 0. Before taking up the main subject, we remark that a mapping
f : X → Y between linear spaces satisfies the Euler–Lagrange functional
equation (1.5) if and only if it satisfies the equation (1.1), and so, f is
quadratic [3]. Now, we introduce a stability theorem for an approximate
Euler–Lagrange quadratic mapping of the equation (1.5).

Theorem 2.1. Suppose that a mapping f : X → Y with f(0) = 0
satisfies the inequality

∥Dk,lf(x, y)∥ ≤ ψ(x, y), x, y ∈ X,(2.1)

and the perturbing function ψ : X2 → [0,∞) satisfies

∞∑
i=0

ψ(kix, kiy)

k2i
<∞, x, y ∈ X.(2.2)

Then there exists a unique quadratic mapping Q1 : X → Y , defined by

Q1(x) = lim
n→∞

f(knx)

k2n
, x ∈ X,(2.3)

which satisfies the approximation

∥f(x)−Q1(x)∥ ≤ 1

2k2|l − 1|

∞∑
i=0

ψ(kix, 0)

k2i
, x ∈ X.(2.4)

Proof. Putting y := 0 in (2.1) and dividing by 2k2|l − 1|, we obtain∥∥∥∥f(kx)k2
− f(x)

∥∥∥∥ ≤ ψ(x, 0)

2k2|l − 1|
(2.5)

for all x ∈ X. Using the induction argument on the positive integers n,
we may obtain∥∥∥∥f(x)− f(knx)

k2n

∥∥∥∥ ≤ 1

2k2|l − 1|

n−1∑
i=0

ψ(kix, 0)

k2i
, x ∈ X.(2.6)
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Now, it follows from (2.6) that for any positive integers m > n > 0,∥∥∥∥f(kmx)k2m
− f(knx)

k2n

∥∥∥∥ =

∥∥∥∥f(km−n+nx)

k2(m−n+n)
− f(knx)

k2n

∥∥∥∥
=

1

k2n

∥∥∥∥f(knx)− f(km−nknx)

k2(m−n)

∥∥∥∥
≤ 1

2k2|l − 1|

m−n−1∑
i=0

ψ(ki+nx, 0)

k2(i+n)
(2.7)

for all x ∈ X. Since the right-hand side of the inequality (2.7) tends

to 0 as n → ∞, a sequence {f(knx)
k2n

} is Cauchy in the Banach space Y .
Therefore, we may define a mapping Q1 : X → Y as

Q1(x) = lim
n→∞

f(knx)

k2n
, x ∈ X.

Letting n→ ∞ in (2.6), we lead to the approximation (2.4).
Replacing (x, y) by (knx, kny) in (2.1) and dividing by k2n, we obtain

1

k2n

∥∥∥Dk,lf(k
nx, kny)

∥∥∥ ≤ 1

k2n
ψ(knx, kny), x, y ∈ X.

Taking the limit as n→ ∞, we see from (2.2) and (2.3) that the mapping
Q1 satisfies the equation (1.5) and so it is quadratic.

To prove the uniqueness of quadratic mapping Q1 satisfying the ap-
proximation (2.4), let us assume that there exists a quadratic map-
ping Q′

1 : X → Y which satisfies the estimation (2.4). Then, we have
Q1(k

nx) = k2nQ1(x) and Q′
1(k

nx) = k2nQ′
1(x) for all x ∈ X and all

n ∈ N because they are quadratic mappings. Hence, it follows from
(2.4) that

∥Q1(x)−Q′
1(x)∥ =

1

k2n
∥Q1(k

nx)−Q′
1(k

nx)∥

≤ 1

k2n

[
∥Q1(k

nx)− f(knx)∥+ ∥f(knx)−Q′
1(k

nx)∥
]

≤ 1

k2|l − 1|

∞∑
i=n

ψ(kix, 0)

k2i
, ∀n ∈ N,

which tends to zero as n→ ∞. This completes the proof.

The following theorem is an alternative stability result concerning
the stability of functional equation (1.5) controlled by the perturbing
function ψ.
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Theorem 2.2. Suppose that a mapping f : X → Y with f(0) = 0
satisfies the inequality (1.5) and the perturbing function ψ : X2 → [0,∞)
satisfies the following condition

∞∑
i=1

k2iψ
( x
ki
,
y

ki

)
<∞, x, y ∈ X.(2.8)

Then there exists a unique quadratic mapping Q2 : X → Y, defined as

Q2(x) = lim
n→∞

k2nf(
x

kn
), x ∈ X,

which satisfies the estimation

∥f(x)−Q2(x)∥ ≤ 1

2k2|l − 1|

∞∑
i=1

k2iψ(
x

ki
, 0), x ∈ X.(2.9)

Proof. It follows from (2.5) that∥∥∥f(x)− k2f(
x

k
)
∥∥∥ ≤ 1

2k2|l − 1|
k2ψ(

x

k
, 0),

which yields the following functional inequality∥∥∥f(x)− k2nf(
x

kn
)
∥∥∥ ≤ 1

2k2|l − 1|

n∑
j=1

k2jψ(
x

kj
, 0)

for all x ∈ X. The remaining assertions go similarly through the proof
of Theorem 2.1, and thus we omit the proof.

Now, we obtain a corollary of Theorem 2.1 in the complete normed
space (Y, ∥ · ∥) under the uniformly bounded condition of perturbing
term Dk,lf(x, y).

Corollary 2.3. Let ε be a nonnegative real number and |k| > 1. If
a mapping f : X → Y with f(0) = 0 satisfies the inequality

∥Dk,lf(x, y)∥ ≤ ε, x, y ∈ X,

then there exists a unique quadratic mapping Q : X → Y which satisfies
the equation (1.5) and the inequality

∥f(x)−Q(x)∥ ≤ ε

2|l − 1||k2 − 1|
, x ∈ X.
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3. Stability of (1.5) in non-Archimedean spaces

LetK be a field equipped with a function, so called, non-Archimedean
valuation | · |v from K into [0,∞) satisfying the following conditions:

(a) |r|v = 0 if and only if r = 0;
(b) |rs|v = |r|v|s|v;
(c) the strong triangle inequality, namely, |r + s|v ≤ max{|r|v, |s|v}

for all r, s ∈ K. In this case, it is said that the pair (K, | · |v) is a non-
Archimedean field. Then, it is clear that |1|v = 1 = | − 1|v and |n|v ≤ 1
for all integers n.

Now, let Y be a vector space over the non-Archimedean field K with
a non-trivial non-Archimedean valuation | · |v. Then a function ∥ · ∥v :
Y → [0,∞) is called a non-Archimedean norm if it satisfies the following
conditions:

(a) ∥x∥v = 0 if and only if x = 0;
(b) ∥rx∥v = |r|v∥x∥v for all x ∈ Y and all r ∈ K;
(c) the strong triangle inequality, namely,

∥x+ y∥v ≤ max{∥x∥v, ∥y∥v}

for all x, y ∈ Y. In this case, the pair (Y, ∥·∥v) is called a non-Archimedean
normed space, and we mean that a non-Archimedean normed space
(Y, ∥ · ∥v) is complete if and only if every Cauchy sequence in Y is con-
vergent in the space Y by the norm ∥ · ∥v. It follows from the strong
triangle inequality that

∥xn − xm∥v ≤ max{∥xj+1 − xj∥v : m ≤ j < n− 1}

for all xn, xm ∈ Y and all m,n ∈ N with n > m. Therefore, a sequence
{xn} is a Cauchy sequence in non-Archimedean normed space (Y, ∥ · ∥v)
if and only if the sequence {xn+1 − xn} converges to zero in the space
(Y, ∥ · ∥v). Now, we will investigate the generalized the Hyers–Ulam
stability problem for the functional equation (1.5) in a complete non-
Archimedean normed space Y . In this section, let X be a vector space
and Y a complete non-Archimedean normed space.

Theorem 3.1. Let ψ : X2 → [0,∞) be a function such that

Ψ1(x) := lim
n→∞

max

{
ψ(kix, 0)

|k|2iv
: 0 ≤ i < n

}
< ∞,(3.1)

lim
n→∞

ψ(knx, kny)

|k|2nv
= 0
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for all x, y ∈ X. If a mapping f : X → Y with f(0) = 0 satisfies the
inequality

∥Dk,lf(x, y)∥v ≤ ψ(x, y), x, y ∈ X,(3.2)

then there exists a quadratic mapping Q1 : X → Y, defined as

Q1(x) = lim
n→∞

f(knx)

k2n
, x ∈ X,(3.3)

which satisfies the equation (1.5) and the approximation

∥f(x)−Q1(x)∥v ≤ 1

|2|v|l − 1|v|k|2v
Ψ1(x) x ∈ X.(3.4)

Moreover, if

lim
m→∞

Ψ1(k
mx)

|k|2mv
= lim

m→∞
lim
n→∞

max

{
ψ(kjx, 0)

|k|2jv
: m ≤ j < m+ n

}
= 0

for all x ∈ X, then Q1 is a unique quadratic mapping satisfying (3.4).

Proof. Putting y := 0 in (3.2) and dividing by |2|v|l − 1|v|k|2v, we
arrive at

∥f(kx)
k2

− f(x)∥v ≤ ψ(x, 0)

|2|v|l − 1|v|k|2v
(3.5)

for all x ∈ X, where |k|v ≤ 1 is a non-Archimedean valuation. Replacing
x by knx in (3.5) and dividing by |k|2nv ,∥∥∥∥f(kn+1x)

k2n+2
− f(knx)

k2n

∥∥∥∥
v

≤ ψ(knx, 0)

|2|v|l − 1|v|k|2n+2
v

, x ∈ X.(3.6)

Since the right-hand side of the inequality (3.6) tends to 0 as n → ∞,

a sequence {f(knx)
k2n

} is Cauchy in the complete non-Archimedean space
(Y, ∥ · ∥v). Therefore, we may define a mapping Q1 : X → Y as

Q1(x) = lim
n→∞

f(knx)

k2n
, x ∈ X.

Using the induction argument and the strong triangle inequality, we may
figure out∥∥∥∥f(x)− f(knx)

k2n

∥∥∥∥
v

≤ 1

|2|v|l − 1|v|k|2v
max

{
ψ(kix, 0)

|k|2iv
: 0 ≤ i < n

}
for all x ∈ X. Letting n → ∞ in the last inequality, we lead to the
approximation (3.4).



94 John Michael Rassias, Hark-Mahn Kim and Eunyoung Son

Next, we have to show that the mapping Q1 defined above satisfies
equation (1.5). Replacing (x, y) by (knx, kny) in (3.2), and then dividing
the resulting inequality by |k|2nv , it follows that

1

|k|2nv
∥Dk,lf(k

nx, kny)∥v ≤ 1

|k|2nv
ψ(knx, kny), x, y ∈ X.

Taking the limit as n→ ∞, it follows from (3.1) and (3.3) that

Dk,lQ1(x, y) = 0, x, y ∈ X.

Therefore, the mapping Q1 satisfies the equation (1.5) and so it is qua-
dratic.

In the last, we now prove the uniqueness of the quadratic mapping
Q1 satisfying the inequality (3.4). Let us assume that there exists a
quadratic mapping Q′

1 : X → Y which satisfies the inequality (3.4).
Then, we have Q1(k

mx) = k2mQ1(x) and Q′
1(k

mx) = k2mQ′
1(x) for all

x ∈ X and all m ∈ N. Hence, it follows from (3.4) that for all x ∈ X

∥Q1(x) − Q′
1(x)∥v =

1

|k|2mv
∥Q1(k

mx)−Q′
1(k

mx)∥v

≤ 1

|k|2mv
max

{
∥Q1(k

mx)− f(kmx)∥v, ∥f(kmx)−Q′
1(k

mx)∥v
}

≤ 1

|2|v|l − 1|v|k|2v
lim
n→∞

max

{
ψ(km+ix, 0)

|k|2(m+i)
v

: 0 ≤ i < n

}

=
1

|2|v|l − 1|v|k|2v
lim
n→∞

max

{
ψ(kjx, 0)

|k|2jv
: m ≤ j < m+ n

}

=
1

|2|v|l − 1|v|k|2v
Ψ1(k

mx)

|k|2mv
, ∀ m ∈ N,

which tends to zero as m→ ∞. This completes the proof.

The following is an alternative stability theorem of Theorem 3.1 in
the complete non-Archimedean normed space (Y, ∥ · ∥v).

Theorem 3.2. Let ψ : X2 → [0,∞) be a function such that

Ψ2(x) := lim
n→∞

max
{
|k|2iv ψ(

x

ki
, 0) : 1 ≤ i ≤ n

}
< ∞(3.7)

lim
n→∞

|k|2nv ψ(
x

kn
,
y

kn
) = 0

for all x, y ∈ X. If a mapping f : X → Y with f(0) = 0 satisfies the
inequality (3.2) for all x, y ∈ X, then there exists a quadratic mapping
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Q2 : X → Y, defined by

Q2(x) = lim
n→∞

k2nf(
x

kn
), x ∈ X,(3.8)

which satisfies the equation (1.5) and the approximation

∥f(x)−Q2(x)∥v ≤ 1

|2|v|l − 1|v|k|2v
Ψ2(x), x ∈ X.(3.9)

Moreover, if liml→∞ |k|2lv Ψ2(
x
kl
) = 0 for all x ∈ X, then Q2 is a unique

quadratic mapping satisfying (3.9).

Proof. Noting the inequality (3.5), we figure out∥∥∥f(x)− k2f
(x
k

)∥∥∥
v
≤ 1

|2|v|l − 1|v|k|2v
|k|2vψ

(x
k
, 0
)
, x ∈ X.(3.10)

Replacing x by x
kn−1 in (3.10) and multiplying it by |k|2(n−1)

v , we have∥∥∥k2(n−1)f
( x

kn−1

)
− k2nf

( x

kn

)∥∥∥
v
≤ 1

|2|v|l − 1|v|k|2v
|k|2nv ψ

( x

kn
, 0
)

for all x ∈ X. Since the right-hand side in the last inequality tends
to 0 as n → ∞, the sequence {k2nf( x

kn )} is Cauchy in the complete
non-Archimedean space (Y, ∥ · ∥v). Therefore, one can define a mapping
Q2 : X → Y by

Q2(x) = lim
n→∞

k2nf(
x

kn
), x ∈ X.

Using induction on positive integers n, one obtains that

∥f(x)− k2nf(
x

kn
)∥v ≤ 1

|2|v|l − 1|v|k|2v
max

{
|k|2iv ψ(

x

ki
, 0) : 1 ≤ i ≤ n

}
for all x ∈ X. Letting n → ∞ in the last inequality, we arrive at the
approximation (3.9) near f .

The remaining assertions are similar to those of Theorem 3.1.

As a corollary of Theorem 3.2, we obtain the following stability result
in the complete non-Archimedean normed space (Y, ∥ · ∥v) under the
uniformly bounded condition of perturbing term Dk,lf(x, y).

Corollary 3.3. Let ε be a nonnegative real number and |k|v < 1.
If a mapping f : X → Y with f(0) = 0 satisfies the inequality

∥Dk,lf(x, y)∥v ≤ ε, x, y ∈ X,
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then there exists a unique quadratic mapping Q : X → Y which satisfies
the equation (1.5) and the approximation

∥f(x)−Q(x)∥v ≤ ε

|2|v|l − 1|v
, x ∈ X.
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