# APPROXIMATION OF ALMOST EULER-LAGRANGE QUADRATIC MAPPINGS BY QUADRATIC MAPPINGS 

John Michael Rassias, Hark-Mahn $\mathrm{Kim}^{\dagger}$ and Eunyoung Son

$$
\begin{aligned}
& \text { ABSTRACT. For any fixed integers } k, l \text { with } k l(l-1) \neq 0 \text {, we es- } \\
& \text { tablish the generalized Hyers-Ulam stability of an Euler-Lagrange } \\
& \text { quadratic functional equation } \\
& \qquad \begin{array}{c}
f(k x+l y)+f(k x-l y)+2(l-1)\left[k^{2} f(x)-l f(y)\right] \\
\quad=l[f(k x+y)+f(k x-y)]
\end{array}
\end{aligned}
$$

in normed spaces and in non-Archimedean spaces, respectively.

## 1. Introduction

In 1940, S.M. Ulam [22] at the Mathematics Club of the University of Wisconsin has presented the question concerning the stability of group homomorphisms: when a solution of an equation of group homomorphism, differing slightly from a given one, must be near to the exact solution of the given equation. In 1941, Hyers [9] gave an affirmative answer to Ulam's problem for the case of approximate additive mappings on Banach spaces. In 1950, Aoki [1] has extended the Hyers-Ulam stability theorem for unbounded controlled functions. This stability result for approximate additive mappings has been further generalized and rediscovered by Rassias [19] in 1978 and by P. Gǎvruta [7] in 1994.

The quadratic function $f(x)=c x^{2}$ satisfies the functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) \tag{1.1}
\end{equation*}
$$

and therefore the equation (1.1) is called the quadratic functional equation. Every solution of equation (1.1) is said to be a quadratic mapping. The Hyers-Ulam stability theorem for the quadratic functional equation

[^0](1.1) has been established by Skof [21] for mappings $f: E_{1} \rightarrow E_{2}$ where $E_{1}$ is a normed space and $E_{2}$ is a Banach space. The result of Skof has been further generalized by Czerwik [4], Rassias [20], Borelli and Forti [2]. During the last three decades, a number of papers and research monographs have been published on various generalizations and applications of the Hyers-Ulam stability of several functional equations, and there are many interesting results concerning these stability theorems of several functional equations $[5,8,10,12,13]$.

In particular, Rassias investigated the Hyers-Ulam stability for the relative Euler-Lagrange functional equation

$$
\begin{equation*}
f(a x+b y)+f(b x-a y)=\left(a^{2}+b^{2}\right)[f(x)+f(y)] \tag{1.2}
\end{equation*}
$$

in the references $[16,17,18]$.
For any fixed integers $k$ with $k \neq 0,1$, Kim et al. [14] investigated the generalized Hyers-Ulam stability of the Euler-Lagrange quadratic functional equation

$$
\begin{align*}
& f(k x+y)+f(k x-y)  \tag{1.3}\\
& \quad=k[f(x+y)+f(x-y)]+2(k-1)[k f(x)-f(y)]
\end{align*}
$$

in normed spaces and in non-Archimedean normed spaces. In addition, the authors [15] have established the generalized Hyers-Ulam stability of the Euler-Lagrange quadratic functional equation

$$
\begin{align*}
& f(k x+l y)+f(k x-l y)  \tag{1.4}\\
& \quad=k l[f(x+y)+f(x-y)]+2(k-l)[k f(x)-l f(y)]
\end{align*}
$$

in fuzzy Banach spaces, where $k, l$ are nonzero rational numbers with $k \neq l$. Combining the equation (1.3) with (1.4), we arrive at the following functional equation

$$
\begin{align*}
& f(k x+l y)+f(k x-l y)+2(l-1)\left[k^{2} f(x)-l f(y)\right]  \tag{1.5}\\
& \quad=l[f(k x+y)+f(k x-y)]
\end{align*}
$$

and the authors [3] recently have established the generalized Hyers-Ulam stability of the equation in fuzzy Banach spaces. In this paper, we are going to investigate the generalized Hyers-Ulam stability of the equation (1.5) in normed spaces and in non-Archimedean normed spaces for any fixed nonzero integers $k, l$ with $l \neq 1$.

## 2. Stability of (1.5) in Banach spaces

In this section, let $X$ be a normed space and $Y$ a Banach space. For notational convenience, we would like to define an operator $D_{k, l} f(x, y)$ as

$$
\begin{gathered}
D_{k, l} f(x, y):=f(k x+l y)+f(k x-l y)+2(l-1)\left[k^{2} f(x)-l f(y)\right] \\
-l[f(k x+y)+f(k x-y)]
\end{gathered}
$$

for all $x, y \in X$, where $k, l$ are fixed nonzero integer numbers with $k l(l-$ 1) $\neq 0$. Before taking up the main subject, we remark that a mapping $f: X \rightarrow Y$ between linear spaces satisfies the Euler-Lagrange functional equation (1.5) if and only if it satisfies the equation (1.1), and so, $f$ is quadratic [3]. Now, we introduce a stability theorem for an approximate Euler-Lagrange quadratic mapping of the equation (1.5).

Theorem 2.1. Suppose that a mapping $f: X \rightarrow Y$ with $f(0)=0$ satisfies the inequality

$$
\begin{equation*}
\left\|D_{k, l} f(x, y)\right\| \leq \psi(x, y), x, y \in X \tag{2.1}
\end{equation*}
$$

and the perturbing function $\psi: X^{2} \rightarrow[0, \infty)$ satisfies

$$
\begin{equation*}
\sum_{i=0}^{\infty} \frac{\psi\left(k^{i} x, k^{i} y\right)}{k^{2 i}}<\infty, x, y \in X \tag{2.2}
\end{equation*}
$$

Then there exists a unique quadratic mapping $Q_{1}: X \rightarrow Y$, defined by

$$
\begin{equation*}
Q_{1}(x)=\lim _{n \rightarrow \infty} \frac{f\left(k^{n} x\right)}{k^{2 n}}, x \in X \tag{2.3}
\end{equation*}
$$

which satisfies the approximation

$$
\begin{equation*}
\left\|f(x)-Q_{1}(x)\right\| \leq \frac{1}{2 k^{2}|l-1|} \sum_{i=0}^{\infty} \frac{\psi\left(k^{i} x, 0\right)}{k^{2 i}}, \quad x \in X \tag{2.4}
\end{equation*}
$$

Proof. Putting $y:=0$ in (2.1) and dividing by $2 k^{2}|l-1|$, we obtain

$$
\begin{equation*}
\left\|\frac{f(k x)}{k^{2}}-f(x)\right\| \leq \frac{\psi(x, 0)}{2 k^{2}|l-1|} \tag{2.5}
\end{equation*}
$$

for all $x \in X$. Using the induction argument on the positive integers $n$, we may obtain

$$
\begin{equation*}
\left\|f(x)-\frac{f\left(k^{n} x\right)}{k^{2 n}}\right\| \leq \frac{1}{2 k^{2}|l-1|} \sum_{i=0}^{n-1} \frac{\psi\left(k^{i} x, 0\right)}{k^{2 i}}, x \in X \tag{2.6}
\end{equation*}
$$

Now, it follows from (2.6) that for any positive integers $m>n>0$,

$$
\begin{align*}
\left\|\frac{f\left(k^{m} x\right)}{k^{2 m}}-\frac{f\left(k^{n} x\right)}{k^{2 n}}\right\| & =\left\|\frac{f\left(k^{m-n+n} x\right)}{k^{2(m-n+n)}}-\frac{f\left(k^{n} x\right)}{k^{2 n}}\right\| \\
& =\frac{1}{k^{2 n}}\left\|f\left(k^{n} x\right)-\frac{f\left(k^{m-n} k^{n} x\right)}{k^{2(m-n)}}\right\| \\
& \leq \frac{1}{2 k^{2}|l-1|} \sum_{i=0}^{m-n-1} \frac{\psi\left(k^{i+n} x, 0\right)}{k^{2(i+n)}} \tag{2.7}
\end{align*}
$$

for all $x \in X$. Since the right-hand side of the inequality (2.7) tends to 0 as $n \rightarrow \infty$, a sequence $\left\{\frac{f\left(k^{n} x\right)}{k^{2 n}}\right\}$ is Cauchy in the Banach space $Y$. Therefore, we may define a mapping $Q_{1}: X \rightarrow Y$ as

$$
Q_{1}(x)=\lim _{n \rightarrow \infty} \frac{f\left(k^{n} x\right)}{k^{2 n}}, x \in X
$$

Letting $n \rightarrow \infty$ in (2.6), we lead to the approximation (2.4).
Replacing $(x, y)$ by $\left(k^{n} x, k^{n} y\right)$ in (2.1) and dividing by $k^{2 n}$, we obtain

$$
\frac{1}{k^{2 n}}\left\|D_{k, l} f\left(k^{n} x, k^{n} y\right)\right\| \leq \frac{1}{k^{2 n}} \psi\left(k^{n} x, k^{n} y\right), x, y \in X
$$

Taking the limit as $n \rightarrow \infty$, we see from (2.2) and (2.3) that the mapping $Q_{1}$ satisfies the equation (1.5) and so it is quadratic.

To prove the uniqueness of quadratic mapping $Q_{1}$ satisfying the approximation (2.4), let us assume that there exists a quadratic mapping $Q_{1}^{\prime}: X \rightarrow Y$ which satisfies the estimation (2.4). Then, we have $Q_{1}\left(k^{n} x\right)=k^{2 n} Q_{1}(x)$ and $Q_{1}^{\prime}\left(k^{n} x\right)=k^{2 n} Q_{1}^{\prime}(x)$ for all $x \in X$ and all $n \in \mathbf{N}$ because they are quadratic mappings. Hence, it follows from (2.4) that

$$
\begin{aligned}
& \left\|Q_{1}(x)-Q_{1}^{\prime}(x)\right\|=\frac{1}{k^{2 n}}\left\|Q_{1}\left(k^{n} x\right)-Q_{1}^{\prime}\left(k^{n} x\right)\right\| \\
& \quad \leq \frac{1}{k^{2 n}}\left[\left\|Q_{1}\left(k^{n} x\right)-f\left(k^{n} x\right)\right\|+\left\|f\left(k^{n} x\right)-Q_{1}^{\prime}\left(k^{n} x\right)\right\|\right] \\
& \quad \leq \frac{1}{k^{2}|l-1|} \sum_{i=n}^{\infty} \frac{\psi\left(k^{i} x, 0\right)}{k^{2 i}}, \quad \forall n \in \mathbf{N}
\end{aligned}
$$

which tends to zero as $n \rightarrow \infty$. This completes the proof.
The following theorem is an alternative stability result concerning the stability of functional equation (1.5) controlled by the perturbing function $\psi$.

Theorem 2.2. Suppose that a mapping $f: X \rightarrow Y$ with $f(0)=0$ satisfies the inequality (1.5) and the perturbing function $\psi: X^{2} \rightarrow[0, \infty)$ satisfies the following condition

$$
\begin{equation*}
\sum_{i=1}^{\infty} k^{2 i} \psi\left(\frac{x}{k^{i}}, \frac{y}{k^{i}}\right)<\infty, x, y \in X \tag{2.8}
\end{equation*}
$$

Then there exists a unique quadratic mapping $Q_{2}: X \rightarrow Y$, defined as

$$
Q_{2}(x)=\lim _{n \rightarrow \infty} k^{2 n} f\left(\frac{x}{k^{n}}\right), x \in X
$$

which satisfies the estimation

$$
\begin{equation*}
\left\|f(x)-Q_{2}(x)\right\| \leq \frac{1}{2 k^{2}|l-1|} \sum_{i=1}^{\infty} k^{2 i} \psi\left(\frac{x}{k^{i}}, 0\right), \quad x \in X \tag{2.9}
\end{equation*}
$$

Proof. It follows from (2.5) that

$$
\left\|f(x)-k^{2} f\left(\frac{x}{k}\right)\right\| \leq \frac{1}{2 k^{2}|l-1|} k^{2} \psi\left(\frac{x}{k}, 0\right)
$$

which yields the following functional inequality

$$
\left\|f(x)-k^{2 n} f\left(\frac{x}{k^{n}}\right)\right\| \leq \frac{1}{2 k^{2}|l-1|} \sum_{j=1}^{n} k^{2 j} \psi\left(\frac{x}{k^{j}}, 0\right)
$$

for all $x \in X$. The remaining assertions go similarly through the proof of Theorem 2.1, and thus we omit the proof.

Now, we obtain a corollary of Theorem 2.1 in the complete normed space $(Y,\|\cdot\|)$ under the uniformly bounded condition of perturbing term $D_{k, l} f(x, y)$.

Corollary 2.3. Let $\varepsilon$ be a nonnegative real number and $|k|>1$. If a mapping $f: X \rightarrow Y$ with $f(0)=0$ satisfies the inequality

$$
\left\|D_{k, l} f(x, y)\right\| \leq \varepsilon, \quad x, y \in X
$$

then there exists a unique quadratic mapping $Q: X \rightarrow Y$ which satisfies the equation (1.5) and the inequality

$$
\|f(x)-Q(x)\| \leq \frac{\varepsilon}{2|l-1|\left|k^{2}-1\right|}, \quad x \in X
$$

## 3. Stability of (1.5) in non-Archimedean spaces

Let $\mathbf{K}$ be a field equipped with a function, so called, non-Archimedean valuation $|\cdot|_{v}$ from $\mathbf{K}$ into $[0, \infty)$ satisfying the following conditions:
(a) $|r|_{v}=0$ if and only if $r=0$;
(b) $|r s|_{v}=|r|_{v}|s|_{v}$;
(c) the strong triangle inequality, namely, $|r+s|_{v} \leq \max \left\{|r|_{v},|s|_{v}\right\}$ for all $r, s \in \mathbf{K}$. In this case, it is said that the pair $\left(\mathbf{K},|\cdot|_{v}\right)$ is a nonArchimedean field. Then, it is clear that $|1|_{v}=1=|-1|_{v}$ and $|n|_{v} \leq 1$ for all integers $n$.

Now, let $Y$ be a vector space over the non-Archimedean field $\mathbf{K}$ with a non-trivial non-Archimedean valuation $|\cdot|_{v}$. Then a function $\|\cdot\|_{v}$ : $Y \rightarrow[0, \infty)$ is called a non-Archimedean norm if it satisfies the following conditions:
(a) $\|x\|_{v}=0$ if and only if $x=0$;
(b) $\|r x\|_{v}=|r|_{v}\|x\|_{v}$ for all $x \in Y$ and all $r \in \mathbf{K}$;
(c) the strong triangle inequality, namely,

$$
\|x+y\|_{v} \leq \max \left\{\|x\|_{v},\|y\|_{v}\right\}
$$

for all $x, y \in Y$. In this case, the pair $\left(Y,\|\cdot\|_{v}\right)$ is called a non-Archimedean normed space, and we mean that a non-Archimedean normed space $\left(Y,\|\cdot\|_{v}\right)$ is complete if and only if every Cauchy sequence in $Y$ is convergent in the space $Y$ by the norm $\|\cdot\|_{v}$. It follows from the strong triangle inequality that

$$
\left\|x_{n}-x_{m}\right\|_{v} \leq \max \left\{\left\|x_{j+1}-x_{j}\right\|_{v}: m \leq j<n-1\right\}
$$

for all $x_{n}, x_{m} \in Y$ and all $m, n \in \mathbf{N}$ with $n>m$. Therefore, a sequence $\left\{x_{n}\right\}$ is a Cauchy sequence in non-Archimedean normed space $\left(Y,\|\cdot\|_{v}\right)$ if and only if the sequence $\left\{x_{n+1}-x_{n}\right\}$ converges to zero in the space $\left(Y,\|\cdot\|_{v}\right)$. Now, we will investigate the generalized the Hyers-Ulam stability problem for the functional equation (1.5) in a complete nonArchimedean normed space $Y$. In this section, let $X$ be a vector space and $Y$ a complete non-Archimedean normed space.

Theorem 3.1. Let $\psi: X^{2} \rightarrow[0, \infty)$ be a function such that

$$
\begin{align*}
\Psi_{1}(x):=\lim _{n \rightarrow \infty} \max \left\{\frac{\psi\left(k^{i} x, 0\right)}{|k|_{v}^{2 i}}: 0 \leq i<n\right\} & <\infty  \tag{3.1}\\
\lim _{n \rightarrow \infty} \frac{\psi\left(k^{n} x, k^{n} y\right)}{|k|_{v}^{2 n}} & =0
\end{align*}
$$

for all $x, y \in X$. If a mapping $f: X \rightarrow Y$ with $f(0)=0$ satisfies the inequality

$$
\begin{equation*}
\left\|D_{k, l} f(x, y)\right\|_{v} \leq \psi(x, y), \quad x, y \in X \tag{3.2}
\end{equation*}
$$

then there exists a quadratic mapping $Q_{1}: X \rightarrow Y$, defined as

$$
\begin{equation*}
Q_{1}(x)=\lim _{n \rightarrow \infty} \frac{f\left(k^{n} x\right)}{k^{2 n}}, \quad x \in X \tag{3.3}
\end{equation*}
$$

which satisfies the equation (1.5) and the approximation

$$
\begin{equation*}
\left\|f(x)-Q_{1}(x)\right\|_{v} \leq \frac{1}{|2|_{v}|l-1|_{v}|k|_{v}^{2}} \Psi_{1}(x) \quad x \in X \tag{3.4}
\end{equation*}
$$

Moreover, if
$\lim _{m \rightarrow \infty} \frac{\Psi_{1}\left(k^{m} x\right)}{|k|_{v}^{2 m}}=\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{\frac{\psi\left(k^{j} x, 0\right)}{|k|_{v}^{2 j}}: m \leq j<m+n\right\}=0$
for all $x \in X$, then $Q_{1}$ is a unique quadratic mapping satisfying (3.4).
Proof. Putting $y:=0$ in (3.2) and dividing by $|2|_{v}|l-1|_{v}|k|_{v}^{2}$, we arrive at

$$
\begin{equation*}
\left\|\frac{f(k x)}{k^{2}}-f(x)\right\|_{v} \leq \frac{\psi(x, 0)}{|2|_{v}|l-1|_{v}|k|_{v}^{2}} \tag{3.5}
\end{equation*}
$$

for all $x \in X$, where $|k|_{v} \leq 1$ is a non-Archimedean valuation. Replacing $x$ by $k^{n} x$ in (3.5) and dividing by $|k|_{v}^{2 n}$,

$$
\begin{equation*}
\left\|\frac{f\left(k^{n+1} x\right)}{k^{2 n+2}}-\frac{f\left(k^{n} x\right)}{k^{2 n}}\right\|_{v} \leq \frac{\psi\left(k^{n} x, 0\right)}{|2|_{v}|l-1|_{v}|k|_{v}^{2 n+2}}, \quad x \in X . \tag{3.6}
\end{equation*}
$$

Since the right-hand side of the inequality (3.6) tends to 0 as $n \rightarrow \infty$, a sequence $\left\{\frac{f\left(k^{n} x\right)}{k^{2 n}}\right\}$ is Cauchy in the complete non-Archimedean space $\left(Y,\|\cdot\|_{v}\right)$. Therefore, we may define a mapping $Q_{1}: X \rightarrow Y$ as

$$
Q_{1}(x)=\lim _{n \rightarrow \infty} \frac{f\left(k^{n} x\right)}{k^{2 n}}, \quad x \in X
$$

Using the induction argument and the strong triangle inequality, we may figure out

$$
\left\|f(x)-\frac{f\left(k^{n} x\right)}{k^{2 n}}\right\|_{v} \leq \frac{1}{|2|_{v}|l-1|_{v}|k|_{v}^{2}} \max \left\{\frac{\psi\left(k^{i} x, 0\right)}{|k|_{v}^{2 i}}: 0 \leq i<n\right\}
$$

for all $x \in X$. Letting $n \rightarrow \infty$ in the last inequality, we lead to the approximation (3.4).

Next, we have to show that the mapping $Q_{1}$ defined above satisfies equation (1.5). Replacing $(x, y)$ by ( $k^{n} x, k^{n} y$ ) in (3.2), and then dividing the resulting inequality by $|k|_{v}^{2 n}$, it follows that

$$
\frac{1}{|k|_{v}^{2 n}}\left\|D_{k, l} f\left(k^{n} x, k^{n} y\right)\right\|_{v} \leq \frac{1}{|k|_{v}^{2 n}} \psi\left(k^{n} x, k^{n} y\right), \quad x, y \in X .
$$

Taking the limit as $n \rightarrow \infty$, it follows from (3.1) and (3.3) that

$$
D_{k, l} Q_{1}(x, y)=0, \quad x, y \in X
$$

Therefore, the mapping $Q_{1}$ satisfies the equation (1.5) and so it is quadratic.

In the last, we now prove the uniqueness of the quadratic mapping $Q_{1}$ satisfying the inequality (3.4). Let us assume that there exists a quadratic mapping $Q_{1}^{\prime}: X \rightarrow Y$ which satisfies the inequality (3.4). Then, we have $Q_{1}\left(k^{m} x\right)=k^{2 m} Q_{1}(x)$ and $Q_{1}^{\prime}\left(k^{m} x\right)=k^{2 m} Q_{1}^{\prime}(x)$ for all $x \in X$ and all $m \in \mathbf{N}$. Hence, it follows from (3.4) that for all $x \in X$

$$
\begin{aligned}
\| Q_{1}(x) & -Q_{1}^{\prime}(x)\left\|_{v}=\frac{1}{|k|_{v}^{2 m}}\right\| Q_{1}\left(k^{m} x\right)-Q_{1}^{\prime}\left(k^{m} x\right) \|_{v} \\
& \leq \frac{1}{|k|_{v}^{2 m}} \max \left\{\left\|Q_{1}\left(k^{m} x\right)-f\left(k^{m} x\right)\right\|_{v},\left\|f\left(k^{m} x\right)-Q_{1}^{\prime}\left(k^{m} x\right)\right\|_{v}\right\} \\
& \leq \frac{1}{|2|_{v}|l-1|_{v}|k|_{v}^{2}} \lim _{n \rightarrow \infty} \max \left\{\frac{\psi\left(k^{m+i} x, 0\right)}{|k|_{v}^{2(m+i)}}: 0 \leq i<n\right\} \\
& =\frac{1}{|2|_{v}|l-1|_{v}|k|_{v}^{2}} \lim _{n \rightarrow \infty} \max \left\{\frac{\psi\left(k^{j} x, 0\right)}{|k|_{v}^{2 j}}: m \leq j<m+n\right\} \\
& =\frac{1}{|2|_{v}|l-1|_{v}|k|_{v}^{2}} \frac{\Psi_{1}\left(k^{m} x\right)}{|k|_{v}^{2 m}}, \quad \forall m \in \mathbf{N},
\end{aligned}
$$

which tends to zero as $m \rightarrow \infty$. This completes the proof.
The following is an alternative stability theorem of Theorem 3.1 in the complete non-Archimedean normed space $\left(Y,\|\cdot\|_{v}\right)$.

Theorem 3.2. Let $\psi: X^{2} \rightarrow[0, \infty)$ be a function such that

$$
\begin{align*}
\Psi_{2}(x):=\lim _{n \rightarrow \infty} \max \left\{|k|_{v}^{2 i} \psi\left(\frac{x}{k^{i}}, 0\right): 1 \leq i \leq n\right\} & <\infty  \tag{3.7}\\
\lim _{n \rightarrow \infty}|k|_{v}^{2 n} \psi\left(\frac{x}{k^{n}}, \frac{y}{k^{n}}\right) & =0
\end{align*}
$$

for all $x, y \in X$. If a mapping $f: X \rightarrow Y$ with $f(0)=0$ satisfies the inequality (3.2) for all $x, y \in X$, then there exists a quadratic mapping
$Q_{2}: X \rightarrow Y$, defined by

$$
\begin{equation*}
Q_{2}(x)=\lim _{n \rightarrow \infty} k^{2 n} f\left(\frac{x}{k^{n}}\right), \quad x \in X \tag{3.8}
\end{equation*}
$$

which satisfies the equation (1.5) and the approximation

$$
\begin{equation*}
\left\|f(x)-Q_{2}(x)\right\|_{v} \leq \frac{1}{|2|_{v}|l-1|_{v}|k|_{v}^{2}} \Psi_{2}(x), \quad x \in X \tag{3.9}
\end{equation*}
$$

Moreover, if $\lim _{l \rightarrow \infty}|k|_{v}^{2 l} \Psi_{2}\left(\frac{x}{k^{l}}\right)=0$ for all $x \in X$, then $Q_{2}$ is a unique quadratic mapping satisfying (3.9).

Proof. Noting the inequality (3.5), we figure out

$$
\begin{equation*}
\left\|f(x)-k^{2} f\left(\frac{x}{k}\right)\right\|_{v} \leq \frac{1}{|2|_{v}|l-1|_{v}|k|_{v}^{2}}|k|_{v}^{2} \psi\left(\frac{x}{k}, 0\right), x \in X \tag{3.10}
\end{equation*}
$$

Replacing $x$ by $\frac{x}{k^{n-1}}$ in (3.10) and multiplying it by $|k|_{v}^{2(n-1)}$, we have

$$
\left\|k^{2(n-1)} f\left(\frac{x}{k^{n-1}}\right)-k^{2 n} f\left(\frac{x}{k^{n}}\right)\right\|_{v} \leq \frac{1}{|2|_{v}|l-1|_{v}|k|_{v}^{2}}|k|_{v}^{2 n} \psi\left(\frac{x}{k^{n}}, 0\right)
$$

for all $x \in X$. Since the right-hand side in the last inequality tends to 0 as $n \rightarrow \infty$, the sequence $\left\{k^{2 n} f\left(\frac{x}{k^{n}}\right)\right\}$ is Cauchy in the complete non-Archimedean space $\left(Y,\|\cdot\|_{v}\right)$. Therefore, one can define a mapping $Q_{2}: X \rightarrow Y$ by

$$
Q_{2}(x)=\lim _{n \rightarrow \infty} k^{2 n} f\left(\frac{x}{k^{n}}\right), \quad x \in X
$$

Using induction on positive integers $n$, one obtains that
$\left\|f(x)-k^{2 n} f\left(\frac{x}{k^{n}}\right)\right\|_{v} \leq \frac{1}{|2|_{v}|l-1|_{v}|k|_{v}^{2}} \max \left\{|k|_{v}^{2 i} \psi\left(\frac{x}{k^{i}}, 0\right): 1 \leq i \leq n\right\}$
for all $x \in X$. Letting $n \rightarrow \infty$ in the last inequality, we arrive at the approximation (3.9) near $f$.

The remaining assertions are similar to those of Theorem 3.1.
As a corollary of Theorem 3.2, we obtain the following stability result in the complete non-Archimedean normed space $\left(Y,\|\cdot\|_{v}\right)$ under the uniformly bounded condition of perturbing term $D_{k, l} f(x, y)$.

Corollary 3.3. Let $\varepsilon$ be a nonnegative real number and $|k|_{v}<1$. If a mapping $f: X \rightarrow Y$ with $f(0)=0$ satisfies the inequality

$$
\left\|D_{k, l} f(x, y)\right\|_{v} \leq \varepsilon, \quad x, y \in X
$$

then there exists a unique quadratic mapping $Q: X \rightarrow Y$ which satisfies the equation (1.5) and the approximation

$$
\|f(x)-Q(x)\|_{v} \leq \frac{\varepsilon}{|2|_{v}|l-1|_{v}}, \quad x \in X .
$$

## References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Jpn., 2 (1950), pp. 64-66.
[2] C. Borelli, G.L. Forti, On a general Hyers-Ulam stability, Internat. J. Math. Math. Sci., 18, (1995), pp. 229-236.
[3] I.-S. Chang, H.-M. Kim, John M. Rassias, Approximate Euler-Lagrange quadratic mappings in fuzzy Banach spaces, J. Comput. Anal. Appl., 32 (1) (2024), pp. 103-116.
[4] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, 62 (1992), pp. 59-64.
[5] S. Czerwik, Functional equations and inequalities in several variables, World Scientific, New Jersey, London, Singapore, Hong Kong, 2002.
[6] G.L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequationes Math., 50, (1995), pp. 143-190.
[7] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184, (1994), pp. 431-436.
[8] M. Eshaghi Gordji, H. Khodaei, H.-M. Kim, Approximate quartic and quadratic mappings in quasi-Banach spaces, Internat. J. Math. Math. Sci., 2011 (2011), Article ID 734567, 18 pages.
[9] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl Acad. Sci., 27 (1941), pp. 222-224.
[10] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.
[11] K.-W. Jun, Y.-H. Lee, On the Hyers-Ulam-Rassias stability of a pexiderized quadratic inequality, Math. Inequal. Appl., 4(1) (2001), pp. 93-118.
[12] S.-M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl., 222 (1998), pp. 126-137.
[13] S.-M. Jung, Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis, Springer optimization and its applications, 48, Springer,New York, 2011.
[14] H.-M. Kim, J. Lee, E. Son, Approximate Euler-Lagrange quadratic mappings, J. Inequal. Appl., 2012, 2012:58, 14 pages.
[15] H.-M. Kim, John M. Rassias, J. Lee, Fuzzy Approximation of Euler-Lagrange quadratic mappings, J. Inequal. Appl., 2013, 2013:358, 15 pages.
[16] J.M. Rassias, On the stability of the Euler-Lagrange functional equation, Chinese J. Math., 20 (1992), pp. 185-190.
[17] J.M. Rassias, On the stability of the non-linear Euler-Lagrange functional equation in real normed linear spaces, J. Math. Phys. Sci., 28 (1994), pp. 231-235.
[18] J.M. Rassias, On the stability of the general Euler-Lagrange functional equation, Demonstratio Math., 29 (1996), pp. 755-766.
[19] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), pp. 297-300.
[20] Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl., 251 (2000), pp. 264-284.
[21] F. Skof, Local properties and approximations of operators(Italian), Rend. Sem. Mat. Fis. Milano, 53 (1983), pp. 113-129.
[22] S.M. Ulam, A Collection of Mathematical Problems, Interscience Publication, New York, 1960.

John Michael Rassias
Pedagogical Department E.E.
National and Capodistrian University of Athens
Athens, 15342, Greece
E-mail: jrassias@primedu.uoa.gr
Hark-Mahn Kim
Department of Mathematics
Chungnam National University
Daejeon 34134, Korea
E-mail: hmkim@cnu.ac.kr
Eunyoung Son
Department of Mathematics
Chungnam National University
Daejeon 34134, Korea
E-mail: sey8405@hanmail.net


[^0]:    Received March 05, 2024; Accepted May 08, 2024.
    2020 Mathematics Subject Classification: 39B72, 39B82.
    Key words and phrases: Euler-Lagrange quadratic mappings, Hyers-Ulam stability, non-Archimedean normed spaces.

    * This work was supported by research fund of Chungnam National University.
    ${ }^{\dagger}$ Correspondence should be addressed to Hark-Mahn Kim, hmkim@cnu.ac.kr.

